quinta-feira, 16 de janeiro de 2020




FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.
Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
 , 

x


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]


Difração (AO 1945: difracção) é um fenômeno que acontece quando uma onda encontra um obstáculo. Em física clássica, o fenômeno da difração é descrito como uma aparente flexão das ondas em volta de pequenos obstáculos e também como o espalhamento, ou alargamento, das ondas após atravessar orifícios ou fendas. Esse alargamento ocorre conforme o princípio de Huygens. O fenômeno da difração acontece com todos os tipos de ondas, incluindo ondas sonoras, ondas na água e ondas eletromagnéticas (como luz visível, raios-X e ondas de rádio). Assim, a comprovação da difração da luz foi de vital importância para constatar sua natureza ondulatória.
Os objetos físicos também têm propriedades ondulatórias (em nível atômico), ocorrendo, portanto, difração com a matéria, o que pode ser estudado de acordo com os princípios da mecânica quântica.[1]
Ainda que a difração ocorra sempre quando as ondas em propagação encontram mudanças, seus efeitos geralmente são marcados por ondas cujo comprimento é comparável às dimensões do objeto de difração. Por isso, a difração é observada mais recorrentemente nas ondas sonoras, pois são ondas com comprimento grande. Interações sonoras com dimensões entre 2 cm a 20 m são perceptíveis para nós, humanos. A difração da luz, nesse sentido, torna-se extremamente mais rara de acontecer, ou perceber, tendo em vista seu pequeníssimo comprimento de onda de 555nm,[2] embora possam ocorrer fenômenos grandiosos com interferência óptica, tais como o arco-íris.
Se o objeto obstrutor oferecer múltiplas fendas, poderá resultar em um padrão complexo de intensidade variável. Isso se deve à interferência, isto é, a uma sobreposição de partes diferentes de uma onda que se propaga até o observador por caminhos diferentes. Richard Feynman escreveu: “Ninguém nunca foi capaz de definir a diferença entre interferência e difração satisfatoriamente. É somente uma questão de linguagem, e não há diferenças físicas específicas ou importantes entre elas. Tem-se, entretanto, que difração é o fenômeno devido a um obstáculo, já interferência refere-se mais a uma interação entre dois ou mais fenômenos ondulatórios."

    História[editar | editar código-fonte]

    Padrão no anteparo: franjas claras (interferência construtiva) e escuras (interferência destrutiva).
    Embora atualmente o fenômeno da difração seja estudado por si mesmo, antigamente seus estudos foram baseados na curiosidade em desvendar satisfatoriamente a discussão sobre a natureza ondulatória da luz.
    Os efeitos da difração da luz foram primeiramente analisados e descritos pelo padre jesuíta e cientista italiano Francesco Maria Grimaldi, que cunhou o termo "difração" (do latim diffringere, 'quebrar em pedaços'), referindo-se à luz quebrando-se em diferentes direções. Seu conceito de luz era essencialmente ondulatório e explicou a difração da luz analogamente à difração de ondas na água, em que as ondas do mar quebram seu movimento regular ao encontrar um barco ancorado. Determinou também uma relação entre a densidade do meio onde a luz propaga-se e a sua velocidade.[3] Os resultados das observações de Grimaldi foram publicados postumamente em 1665.
    Muitos outros cientistas preocuparam-se em determinar a curiosa natureza da luz, estudando, portanto, os efeitos da difração. Surgiram, no século XVII, dois pensamentos científicos distintos: a teoria corpuscular da luz, defendida por Isaac Newton; e a teoria ondulatória da luz, defendida por Christiaan Huygens. Em ambos os lados, vários cientistas apoiavam uma teoria ou outra com seus conhecimentos e constatações e acabavam refutando inteiramente os aspectos da teoria contrária, pois o conceito de partícula (corpúsculo) é totalmente diferente do conceito de onda. Uma partícula transporta matéria, uma onda não o faz; uma partícula pode se locomover no vácuo, uma onda precisa de um meio para propagar-se (era o que se pensava naquele período); uma onda atravessa obstáculos menores que seu comprimento, uma partícula não o faz.[4]
    Escolheu-se o modelo de Newton como o mais coerente por sua explicação sobre as cores e por causa de sua fama devido às suas outras realizações, ainda que a teoria ondulatória de Huygens não tenha caído no esquecimento. Após 123 anos, Thomas Young questionou várias afirmações da teoria corpuscular. As afirmações de Newton não explicavam por que a luz tinha a mesma velocidade mesmo sendo emitida por corpos diferentes e por que certos corpúsculos eram refletidos e outros refratados. Para ele, considerar a luz uma onda explicaria bem melhor esses fenômenos: as ondas luminosas poderiam, assim como as ondas do mar, anular-se umas às outras ou intensificar-se. Young utilizou desses conceitos para explicar a interferência (através do experimento da dupla fenda) e os “anéis de Newton” tão conhecidos. Entretanto, quanto ao fenômeno da difração e da dupla refração, as explicações de Young deixaram a desejar.[5]

    Explicação teórica[editar | editar código-fonte]

    Representação esquemática da experiência da dupla fenda de Young, em que se observam a difração e a interferência.
    O fenômeno da difração está relacionado com as propriedades de ondas ao transportarem energia de um ponto ao outro do espaço. E é intimamente relacionado ao fenômeno da interferência.
    Como as ondas são caracterizadas por uma variação periódica de uma qualquer propriedade, podem interagir entre si quando duas ou mais ondas atravessam a mesma região do espaço. Pode acontecer também que uma onda tenha a sua velocidade e/ou direção mudadas, ao interagir com um objeto ou meio material interposto em seu caminho.
    A difração, como dito acima, está relacionada com a interação de uma onda com um obstáculo, ou então quando encontra um orifício através do qual possa atravessar um obstáculo.
    A onda então, ao contornar ou atravessar um obstáculo, toma diferentes caminhos (diferentes trajetórias), cujos comprimentos totais podem variar. Da variação dos comprimentos totais atravessados, diversas ondas oriundas da original (segundo o princípio de Huygens, que diz que cada frente de onda se comporta como uma nova fonte pontual) acabam por se recombinar ao passar por um dado ponto do espaço.
    Ao passarem por esse ponto do espaço, ondas difratadas de uma mesma origem tem a mesma fase e por isso podem interagir uma com a outra naquele ponto. A recombinação se processa porque as ondas, exibindo propriedades periódicas ao longo do espaço e ao longo do tempo combinam seus máximos e mínimos de amplitude de uma maneira que depende do total de ondas interagentes e das distâncias totais percorridas. O resultado disso varia entre dois extremos: num caso, num dado ponto, um máximo de amplitude se combina com um mínimo, produzindo uma anulação parcial ou total da energia da onda (interferência destrutiva). Por outro lado, quando dois ou mais máximos ou dois ou mais mínimos se encontram, a energia observada é maior (interferência construtiva). Esse fenômeno é claramente observado na experiência da dupla fenda, onde uma onda atravessa duas fendas (momento em que ocorre a difração) e após passar pelas fendas, os encontros entre cristas e vales da onda causam a interferência.
    Note-se que a amplitude não corresponde diretamente à intensidade da onda, já que a segunda grandeza depende do quadrado da primeira. As grandezas que se somam são as amplitudes, embora as energias totais de uma e outra onda que se interferem seja a soma das energias individuais.
    Isso se dá porque, se se ativer à definição estrita de onda como fenômeno periódico e na ausência de dispersão (que é a variação da velocidade de ondas em função dos seus comprimentos de onda), uma onda pode ser representada por uma função senoidal do tempo e do espaço. (Ver abaixo)

    Difração por uma fenda[editar | editar código-fonte]

    Evolução temporal de um pacote de ondas de matéria (pacote gaussiano) ao incidir sobre uma fenda única. A animação foi construída a partir da solução numérica da equação de Schrödinger dependente do tempo. Observe que há a formação de um máximo central (como esperado).
    Quando uma onda atravessa uma fenda que não é estreita (por exemplo, com uma largura a) a intensidade da luz em um anteparo é dependente do ângulo entre a onda e a fenda. A intensidade é máxima na direção frontal da fenda (), mas diminui quando chega em um ângulo que depende da largura da fenda a e do comprimento de onda .[6]
    Para descobrir a posição dos mínimos, primeiro dividimos a fenda em duas regiões de largura a/2. Na extremidade superior da fenda, fazemos um raio luminoso r1, e na extremidade inferior, um raio r2. Como as ondas secundárias de r1 e r2 pertencem a mesma frente de onda, elas estão em fase, mas, para produzirem um mínimo devem estar defasadas de . Supondo que r1 e r2 sejam paralelas e formem um ângulo  com o eixo central, a diferença entre as distâncias percorridas por r1 e r2 será .
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

     Igualando essa diferença a , obtemos o primeiro mínimo de intensidade em .
    Fazendo o mesmo processo para mais ondas, descobrimos os próximos mínimos em , com m=(1, 2, 3...) (Pontos de intensidade zero).

    Intensidade da luz difratada por uma fenda[editar | editar código-fonte]

    Difração em uma fenda: posição dos mínimos
    Praticamente toda a energia luminosa está no máximo central de difração, antes do primeiro mínimo de intensidade. Podemos descobrir a largura do máximo central (, para cada lado do eixo central) com a seguinte fórmula: .
    Sendo  o ângulo relacionado à largura da fenda, obtido na equação dos mínimos de intensidade;  é a distância que queremos descobrir e  a distância entre a fenda e o anteparo.
    Com a seguinte expressão encontramos a intensidade luminosa em função do ângulo :
    , onde 
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      e os mínimos ocorrem em  (m=1, 2, 3...).

    Difração em fenda dupla[editar | editar código-fonte]

    A difração em fenda dupla é demonstrada pela experiência da dupla fenda de Thomas Young. Quando uma onda é difratada por duas ou mais fendas, o padrão em um anteparo é uma mistura de difração e interferências construtivas e destrutivas.

    Intensidade da luz difratada por duas fendas[editar | editar código-fonte]

    ,
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Onde  e  (d é a distância entre os centros das fendas e a é a largura das fendas).

    Difração por uma abertura circular[editar | editar código-fonte]

    Agora, a abertura é uma fenda de diâmetro , e não mais uma abertura retangular.
    A posição do primeiro mínimo na figura de difração de uma abertura circular é dada por .
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Redes de difração[editar | editar código-fonte]

    A rede de difração é uma generalização da fenda dupla a  fendas igualmente espaçadas. A rede de difração decompõe a onda num espectro, mostrando os máximos e mínimos associados a cada comprimento de onda, que resultam respectivamente de interação construtiva e interação destrutiva entre os feixes emitidos com diferentes ângulos.
    Considerando uma rede de difração com  fendas, tem-se que os máximos e os mínimos observados no espectro obtido obedecem às seguintes equações:
    • Máximos: 
    • Mínimos: 
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Onde:
    •  - distância entre as fendas;
    •  - ângulo entre o feixe e a normal à rede de difração;
    •  - comprimento de onda da radiação;
    •  - número de fendas da rede de difração;
    •  - número natural que varia de  a  (uma vez que entre dois máximos de ordem consecutiva existem  mínimos).
    Note-se que o número natural  designa a ordem do máximo (ou dos  mínimos correspondentes) em estudo. Por exemplo, o máximo de 3.ª ordem é o máximo que surge no espetro que se obtém, substituindo  por  na equação que define as posições dos máximos.

    Difração de Fraunhofer[editar | editar código-fonte]

    É o tipo de difração mais simples. Pode-se dizer que este tipo de difração é aquela em que a onda difratada é plana (pelo menos aproximadamente, na pressão de precisão observado) e exige um tratamento matemático mais simples.
    x


    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




    Difração de raios X é um fenômeno no qual os átomos de um cristal, em virtude de seu espaçamento uniforme, causam um padrão de interferência das ondas presentes em um feixe incidente de raios X. É uma técnica usada para determinar a estrutura atômica e molecular de um cristal, na qual os átomos cristalinos fazem com que um feixe de raios X incidentes difrate em muitas direções específicas. Medindo os ângulos e as intensidades dos feixes difratados, um cristalógrafo pode produzir uma imagem tridimensional da densidade de elétrons dentro do cristal. A partir desta densidade de elétrons, as posições médias dos átomos no cristal podem ser determinadas, bem como suas ligações químicas, sua desordem e várias outras informações[1]. O material analisado é finamente triturado, homogeneizado e a composição média em massa é determinada (difração de raios X em pó)[2].

      História[editar | editar código-fonte]

      Figura 2: Estrutura química da molécula de ftalocianina metálica sintetizada pela primeira vez pelos químicos suíços H. de Diesbach e E. von der Weid em 1927. O átomo central M é um átomo de cobre.
      Em 1933, o químico inglês Patrick Linstead lançou-se no estudo da estrutura atômica da ftalocianina de cobre. Para isso, ele utilizou a difração de raios X - essa técnica não é microscopia, pois fornece uma imagem “indireta” da molécula. Como seu nome indica, ela se baseia no fenômeno de difração – o mesmo que tanto instiga a microscopia. Raios X enviados sobre um cristal da amostra a ser analisada, fornecem uma imagem geométrica, de acordo com as distâncias interatômicas, o que permite remontar à estrutura do cristal. Num cristal de moléculas, bilhões de moléculas idênticas são empilhadas. Mantidas no lugar por suas vizinhas, elas pouco se mexem: este é um ponto crucial para realizar a imagem. Quando o cristal é suficientemente fino, a luz visível consegue atravessá-lo. Entretanto, seu comprimento de onda (de 400 a 800 nanometros) é grande demais para transmitir uma informação: é um pouco como se tentássemos agarrar uma avelã com uma retroescavadeira. É  necessário utilizar comprimentos de onda bem menores. Os raios X convêm perfeitamente: têm comprimentos de onda equivalentes às distancias entre os átomos num cristal, ou seja, alguns nanômetros, até menos. É graças a eles, para citar apenas um dos primeiros exemplos históricos, que conhecemos a estrutura do cloreto de sódio, ou sal de cozinha: malhas quadradas de 0,4 nanometro de lado, cujos topos são ocupados por íons cloro e sódio. Patrick Linstead entregou seus cristais de ftalocianina de cobre a um jovem pesquisador, John Robertson, que efetuou longos cálculos para determinar a organização das moléculas no cristal (Figura 2) e para compreender a organização da própria molécula: trata-se de um quadrado de 1,3 nanometro de lado[3].
      Um dos métodos importantes para caracterizar o arranjo de moléculas em um cristal é o método da difração de raios X. Ele fornece a posição relativa dos átomos que constituem o cristal e, consequentemente, o arranjo espacial entre as moléculas no mesmo. É claro que as estruturas que o método fornece será aquela que a substância toma na forma sólida cristalina. Em solução, quando a molécula estiver solvatada, a estrutura poderá não ser mais exatamente a mesma.
      A difração de raios X tem tido um êxito particular – e porque não dizer espetacular – na determinação da estrutura de moléculas complexas e muito complexas, que valeram aos cientistas que nela trabalharam vários prêmios Nobel. Entre as complexas, pode-se citar a estrutura da vitamina B12 e da penicilina, determinadas por Dorothy Hodgkin (Prêmio Nobel de Química em 1964). Entre as moléculas muito complexas, estão proteínas – as estruturas da mioglobina (1958) e da hemoglobina (1960) foram determinadas por Kendrew e Perutz, respectivamente, o que lhes valeu o prêmio Nobel de Química em 1962 – e a do Ácido Desoxiribonucleico – DNA – talvez a de conseqüências mais profundas na Biologia e mesmo na ciência moderna – por Watson e Cricks em 1953 (Prêmio Nobel de Medicina em 1962)[4].

      A descoberta[editar | editar código-fonte]

      Figura 3: Réplica de um tubo de Crookes, utilizado por Röntgen na primeira experiência da existência dos raios X.
      O século XIX ficou marcado por grandes descobertas que revolucionaram a ciência. Um dos experimentos que abriu as portas para diversos estudos foi o que envolvia a passagem de descargas elétricas através de um tubo de vidro contendo gases rarefeitos, conectado a uma bomba de vácuo (Figura 3). Com a saída do gás e a diminuição da pressão dentro do tubo, um fenômeno é observado na parte oposta ao catodo, essa começa a emitir uma incandescência esverdeada. Willian Crookes, em 1875, concluiu que essa luminescência era algum tipo de radiação que partia do terminal negativo indo em direção ao terminal positivo, denominado de raios catódicos.

      Em 1894, Wilhelm Conrad Röntgen (Figura 4) se interessou pelo trabalho publicado pelo físico Phillip Lenard, sobre os raios catódicos. Ele então iniciou uma série de experimentos com o objetivo de estudar tais radiações e foi em 8 de novembro de 1895, em mais um dia de trabalho, que ele observou que a folha de papel tratada com platinocianeto de bário, deixada próxima ao tudo de raios catódicos, brilhava no escuro, emitindo uma luz.[5] O tubo foi coberto com uma cartolina preta e mesmo assim o papel brilhava, colocou diversos objetos entre o tubo e o papel e os mesmos pareciam ser transparentes. Foi então nesse momento que ele viu os ossos de sua mão na tela.  Após ter registrado suas observações em chapas fotográficas, fez então o anuncio a comunidade, dizendo que pela primeira vez poderia ver dentro do corpo humano sem abri-lo. Através do então denominado por ele, raios X.
      Figura 5: Representação de uma estrutura cristalina de cloreto de sódio.
      Em 1912, o físico alemão Von Laue sugeriu que, se os átomos apresentam uma estrutura cristalina (átomos organizados de forma a apresentarem periodicidade ao longo do espaço) e se os raios X eram ondas eletromagnéticas com comprimento de onda menor que os espaços interatômicos, então os núcleos atômicos que concentram a massa dos átomos poderiam difratar os raios X, formando franjas de difração. Quando Laue fez passar um feixe de raios X por uma amostra monocristalina e pôs um filme fotográfico após a amostra, o resultado foi que, após revelar o filme, ele apresentava pontos sensibilizados pelos raios X difratados.
      As experiências de Laue despertaram grande interesse nos físicos ingleses, W. H. Bragg e seu filho W. L. Bragg, que formularam, ainda em 1913, uma equação extremamente simples para prever os ângulos onde seriam encontrados os picos de intensidade máxima de difração. Assim, conhecendo-se as distâncias interatômicas, poderiam ser resolvidas os problemas envolvidos na determinação da estrutura cristalina. Dessa forma, os Bragg determinaram sua primeira estrutura, a do NaCl (Figura 5). Transformando a difração de raios X na primeira ferramenta eficiente para determinar a estrutura atômica dos materiais, fazendo com que a técnica obtivesse rapidamente grande popularidade entre os institutos de pesquisa.
      Entre as décadas de 1920 e 1930, a literatura foi inundada por estruturas cristalinas determinadas por difração de raios X. Todo mineralogista ou cristalógrafo da época tinha por obrigação determinar a estrutura cristalina de algum composto, mineral ou metal. A difração de raios X também provocou surpresa ao demonstrar a estrutura amorfa do vidro, e também foi a principal ferramenta usada por Watson e Crick, em 1953, para propor a estrutura em dupla hélice do DNA[6].

      Produção e medição de raios-X.[editar | editar código-fonte]

      A fonte de raios-X de laboratório consiste em um tubo de vácuo no qual os elétrons são emitidos a partir de um filamento de tungstênio aquecido e acelerado por um potencial elétrico (tipicamente várias dezenas de kilovolts) para impactar um alvo de metal arrefecido a água. Quando os elétrons internos do alvo são ejetados e os exteriores caem para tomar seu lugar, os raios X são emitidos. Alguns têm uma distribuição contínua de comprimentos de onda entre cerca de 0,5 Å e 5 Å ("radiação branca") e alguns têm comprimentos de onda característicos dos níveis eletrônicos no alvo. Para a maioria das experiências, uma única radiação característica é selecionada usando um filtro ou monocromador[7]. Em relação aos detectores, no passado a maioria dos trabalhos de raio-X foi feito com filme, agora são usados detectores eletrônicos. Pode utilizar-se um único ponto (por exemplo Geiger Muller, contador de cintilação ou proporcional), um detector de linha (1D) ou um detector de área (2D).

      Fundamentação teórica[editar | editar código-fonte]

      O fenômeno de difração de raios X por cristais resulta de um processo de espalhamento no qual os raios X são dispersos pelos elétrons dos átomos sem alteração no comprimento de onda. Um feixe difratado é produzido por tal dispersão somente quando certas condições geométricas são satisfeitas, o que pode ser expresso em qualquer uma de duas formas, a equação de Bragg, ou a de Laue. O padrão de difração resultante de um cristal, que compreende tanto as posições como as intensidades dos efeitos de difração, é uma propriedade física fundamental da substância, servindo não apenas para sua rápida identificação, mas também para a elucidação completa de sua estrutura. A análise das posições do efeito de difração leva imediatamente a um conhecimento do tamanho, forma e orientação da célula unitária. Para localizar as posições dos átomos individuais na célula, as intensidades devem ser medidas e analisadas. O mais importante para relacionar as posições dos átomos com as intensidades de difração é a equação do fator de estrutura[8].

      A dispersão[editar | editar código-fonte]

      A dispersão de raios X é determinada pela densidade de elétrons dentro do cristal. Como a energia de um raio X é muito maior que a de um elétron de valência, a dispersão pode ser modelada como a dispersão de Thomson, a interação de um raio eletromagnético com um elétron livre. Este modelo é geralmente adotado para descrever a polarização da radiação dispersa, conforme descrito na derivação matemática abaixo[9].
      A intensidade da dispersão de Thomson para uma partícula com massa  e carga  é:
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Assim, os núcleos atômicos, que são muito mais pesados do que um elétron, contribuem de forma negligenciável para os raios-X dispersos.

      Dispersão de raios X por elétrons e átomos[editar | editar código-fonte]

      Os raios X são ondas eletromagnéticas e, como tal, são constituídos de um pacote de energia formado por um campo elétrico oscilante, denominado de fóton. Um fóton aos se interagir com um elétron é absorvido, elevando o elétron a um estado excitado, e ele ao voltar a seu estado natural, se torna uma fonte de ondas eletromagnética com mesma frequência e comprimento de onda do fóton absorvido (apenas em caso de espalhamentos). Dessa interação surge assim uma nova frente de onda esférica de raios X, com o elétron como sua origem, derivando sua energia do feixe incidente. Por este processo diz-se que o elétron dispersa o feixe original[8]. Um átomo é constituído por um núcleo carregado positivamente rodeado por uma nuvem de elétrons, um para cada incremento de carga nuclear, sendo o número igual ao número atômico do elemento em questão. As ondas dispersas dos diversos elétrons num átomo combinam-se, de modo que o efeito de dispersão de um átomo pode ser considerado como essencialmente o de uma fonte pontual de raios X dispersos. A intensidade da dispersão é, obviamente, dependente do número de elétrons no átomo, mas porque os elétrons estão distribuídos ao longo do volume do átomo em vez de concentrados em um ponto, a intensidade varia com a direção. No entanto, no presente caso, no tratamento da geometria da difração, o átomo é considerado uma fonte de dispersão pontual.

      Dispersão por uma linha de átomos espaçados regularmente[editar | editar código-fonte]

      Figura 6: Dispersão reforçada por uma linha de átomos regularmente espaçados.
      Fenômenos de interferência com ondas de água e luz são bem conhecidos. De uma forma semelhante, podem surgir interferências construtivas e destrutivas entre as ondas de raios X dispersas dos átomos. Suponha que um feixe de raios X encontre uma fileira de átomos espaçados regularmente, como na Fig. 6. As frentes de onda paralelas fazem com que cada átomo se torne uma fonte de um conjunto de ondas esféricas dispersas da mesma freqüência e comprimento de onda. Na Fig. 6 consideramos a sucessão de cristas de onda e depressões de dois átomos vizinhos em algum instante no tempo. É necessário apenas considerar a dispersão em torno de um par de átomos vizinhos, pois a distância interatômica e o comprimento de onda dos raios X determinam a geometria dos efeitos de difração. A dispersão de átomos mais distantes na fileira contribui apenas (para os mesmos sentidos angulares) para os feixes dispersos representados na Fig. 6. Todos os pontos de interseção dos dois conjuntos de arcos concêntricos são pontos em que as cristas das ondas de ambos os átomos coincidem e suas amplitudes adicionam, levando a interferência construtiva e um máximo de difração. Em pontos entre as interseções, as ondas estão mais ou menos fora de fase e levam a vários graus de interferência destrutiva ou extinção.
      Uma direção óbvia de reforço é aquela perpendicular à frente de onda original. Aqui a diferença de crista de onda entre as ondas dispersas dos dois átomos é zero, e dá origem ao feixe difratado de ordem zero. À direita do feixe de ordem zero é uma direção proeminente de interseções de crista caracterizada por uma crista de onda ou diferença de fase. Este é o feixe de difração de primeira ordem. Da mesma forma, mais à direita, segunda ordem, terceira ordem, e assim por diante para a ordem n, vigas difratadas representam 2, 3, 4,. . , N diferenças na fase da onda (comprimento de onda) na fase entre as ondas dos átomos vizinhos. As ordens negativas correspondentes de difração (menos primeira ordem, menos segunda ordem, etc.) surgem no lado oposto da direção do feixe de ordem zero. Embora a Fig. 6 represente o caso especial de um feixe incidindo em ângulos retos em uma linha de átomos, o caso geral de um feixe fazendo qualquer ângulo com a fileira é inteiramente análogo[8].

      Condições para difração por uma malha linear de átomos[editar | editar código-fonte]

      Figura 7: Condições para a difração de uma fileira de átomos.
      Uma linha reta de átomos regularmente espaçados constitui uma rede linear. Considere que um feixe paralelo de raios X encontra-se com uma tal linha de átomos com um ângulo   (Fig. 7),  sendo o espaçamento constante entre os átomos. Todos os átomos da linha atuam como centros para séries de ondas dispersas, e o reforço que conduz a vigas difratadas de zero, primeiro, segundo e maior ocorre em certas direções. Suponha que uma dessas direções de interferência construtiva faça um ângulo  com o eixo da linha. Então, uma vez que os raios X espalhados em D devem estar em fase com aqueles espalhados em G, os caminhos DE e FG devem diferir por um número inteiro de comprimentos de onda. Isso é:
       (equação 1)
      Onde  é um número inteiro, e  é o comprimento de onda do feixe de raio-x. De Trigonometria simples.
      , e  

      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


      (equação 2)
      Daí a diferença de trajetória é:
       (equação 3)
      Figura 8: Representação esquemática dos cones de difração positivos a partir de uma linha de átomos.
      E a equação 3 é a condição a ser satisfeita pelas várias ordens discretas de feixes difratados a partir dessa fileira de rede. A direção de qualquer ordem dada de feixe difratado é obtida pela resolução de  e substituindo o valor apropriado de ,
       
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      (equação 4)
      Obviamente, o feixe incidente poderia ter encontrado a linha de rede no ângulo  ao invadir a fileira de qualquer direção que seja um gerador de um cone concêntrico com a fileira e do ângulo  do semi ápice (Figura 8) . O local de todos os feixes de ordem zero é, então, um cone idêntico com um ápice comum no ponto de intersecção do feixe com a fileira de átomos; E os feixes incidentes e de ordem zero são geradores diametralmente opostos dos dois cones. As direções que satisfazem a equação 4 para as outras ordens difratadas do feixe encontram-se em outros cones com o mesmo ápice comum e os ângulos de semi-ápice apropriados  (Fig. 8). Note-se que  = .[8]
      À esquerda do feixe de ordem zero (Fig. 7) estão as ordens negativas do feixe difratado, a ordem -mth fazendo um ângulo '-  à esquerda com o feixe de ordem zero e um ângulo ' com a fileira de rede, onde:
       (equação 5)
      Note-se que o ângulo ' é medido a partir da extremidade positiva da fila de rede. Ângulo  é sempre menor do que , quando o ângulo  < 90 °, e os dois ângulos são iguais no caso especial  = 90 º. O local das direções das ordens negativas do feixe difratado é assim uma série de cones à esquerda do cone de ordem zero e tendo o mesmo ápice comum que as ordens positivas. O ângulo interior do cone do semi-ápice ' torna-se o ângulo apical externo quando ' > 90 º. Uma construção trigonométrica e tratamento semelhante ao que leva à equação 4, nos fornece a seguinte equação[8]:
       (equação 6)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      e
       (equação 7)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


      No caso especial em que o feixe incidente é perpendicular à linha de átomos,  = 90 °, o cone de ordem zero degenera em um disco perpendicular à rede linear e os cones de cada ordem positiva e negativa de difração se tornam simétricos sobre a ordem zero. Para um dado  e espaçamento interatômico , somente um número limitado de ordens de difração é possível, pois quando  é tal que faz com que o membro direito da equação 4 exceda a unidade (ou - 1 na equação 7) nenhuma solução para  ou  é possível[8].

      A equação de Bragg[editar | editar código-fonte]

      Tabela 1: Fórmulas para cálculo de espaçamentos interplanares
      A Equação 8 é a equação de Bragg para o sistema cúbico. A referência revela que o fator  na equação 8 é simplesmente o espaçamento interplanar  para o plano (hkl). A equação de Bragg (equação 9) na sua forma geral é então escrita[8]:
       (equação 8)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      e
       (equação 9)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Uma derivação analítica da equação de Bragg quando realizada para um sistema cristalino de simetria inferior conduz a uma expressão idêntica à equação 8 ou 9, exceto com um termo  mais complicado. Estes são, em todos os casos, o espaçamento inter planar para o plano refletor. Assim, para obter a equação na forma especial para cálculos em um determinado sistema de cristais, é necessário apenas substituir em vez de  a expressão (Tabela 1) para , ou o sistema apropriado[8].
      A explicação de Bragg sobre os efeitos de difração de raios X em termos de "reflexão" de uma pilha de planos atômicos paralelos merece breve consideração, tanto por sua simplicidade quanto por seu interesse histórico. As unidades atômicas ou moleculares em um cristal encontram-se nas interseções de uma estrutura de espaço, que as proeminentes faces de cristal são aquelas mais densamente povoadas com pontos de rede (Átomos ou moléculas), e que, paralelamente a cada face ou plano de cristal possível, há uma série de planos idênticos equidistantes. Quando um feixe de raios X atinge uma face de cristal estendida e é refletido no sentido de Bragg o fenômeno não é uma reflexão de superfície, como com a luz comum. Paralelo à face é uma série efetivamente infinita de planos atômicos equidistantes que os raios X penetram a uma profundidade de vários milhões de camadas antes de ser apreciadamente absorvida. Em cada plano atómico pode considerar-se que uma porção de minuto do feixe é refletida. Para que esses minúsculos feixes refletidos surjam como um único feixe de intensidade apreciável, não devem ser absorvidos ao passar por camadas mais próximas da superfície à medida que emergem, e, muito mais importante, os feixes de camadas sucessivas não devem interferir e destruir uns aos outros. Se as condições podem ser arranjadas para que o reforço, em vez de destruição ocorre, todos os planos da série que não são muito profundas no cristal vai contribuir para a reflexão. Bragg demonstrou estas condições da seguinte maneira. Considere as linhas  etc., da Fig. 9 para representar os traços de uma série de planos atômicos de espaçamento interplanar constante d paralelo a uma face de cristal[8]. AB, A'B 'é um comboio de raios X incidentes de comprimento de onda X incidindo sobre os planos e refletindo na direção CD. Para a onda refletida de B 'para reforçar a refletida em C, ela deve chegar em C em fase com a onda ABC. Este será o caso se a diferença de percurso for um número inteiro de comprimentos de onda, isto é, se
       (equação 9)
      Por simples trigonometria
      Figura 9: Geometria da analogia de "reflexão" de Bragg.
       (equação 10)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

       (equação 11)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      substituição na equação 10,  (equação 12)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

       (equação 13).
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Esta é a equação de Bragg, também conhecida como a lei de Bragg (equação 13). Para um cristal de um determinado espaçamento , e para um dado comprimento de onda , as várias ordens  de reflexão ocorrem apenas nos valores precisos do ângulo  que satisfazem a equação 13. Em outros ângulos não há feixe refletido devido a interferência. Isto está em marcado contraste com a reflexão de um feixe de luz a partir de uma superfície de metal polido, que pode ter lugar ao longo de uma grande faixa angular contínua. O ponto de vista da reflexão proporciona assim uma Imagem de difração em cristais, e tem sido amplamente utilizado[8].
      Os instrumentos tradicionais de medida são o difratômetro (método de pó) e as câmaras de monocristais, estas últimas atualmente com seu uso restrito a situações específicas para determinação de parâmetros cristalográficos. No difratômetro tradicional a captação do eixo difratado é feita por meio de um detector, segundo um arranjo geométrico conhecido como Bragg-Brentano, que habilita a obtenção do ângulo .[8]
      O feixe difratado é normalmente expresso através de picos que se destacam do background (ou linha de base), registrados num espectro de intensidade versus o ângulo , constituindo o padrão difratométrico ou difratograma. O padrão difratométrico representa uma coleção de perfis de reflexões ( difrações ) individuais ( ou picos difratados), cada qual com sua altura, largura, área integrada, posição angular e caudas que decaem gradualmente a medida que se distanciam da posição de altura máxima do pico. A intensidade integrada é proporcional à intensidade de Bragg, I(hkI). A identificação das substâncias cristalinas ( através do método de pó) é obtida através da comparação do difratograma com padrões difratométricos de fases individuais disponibilizadas pelo ICDD ( International Center for Diffraction Data, antigo JCPDS-Joint Committe of Powder Diffraction Standards)[8].

      Relação entre a estrutura cristalina e os dados de raios X: posições de pico, intensidades e larguras[editar | editar código-fonte]

      Posições de pico[editar | editar código-fonte]

      Usando a Lei de Bragg, as posições de pico podem ser teoricamente calculadas.[9]
       (equação 14)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Para uma célula unitária cúbica:
       onde  e  é o parâmetro de célula.
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Assim, o valor medido  pode estar relacionado com os parâmetros da célula.

      Intensidade do pico[editar | editar código-fonte]

      O fator de estrutura, de uma reflexão, , é dependente do tipo de átomos e suas posições  na célula unitária.[9]
       (equação 15)
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

       é o fator de dispersão para o átomo  e está relacionado ao seu número atômico.
      A intensidade de um pico  é dada por:
      As diferenças de intensidade se relacionam com mudanças na química (fator de dispersão). No entanto, mais comumente para amostras multifásicas, as alterações nas intensidades estão relacionadas com a quantidade de cada fase presente na amostra. São necessários fatores de calibração adequados para realizar a análise de fase quantitativa.

      Largura do pico[editar | editar código-fonte]

      A largura de pico β em radianos é inversamente proporcional ao tamanho do cristalito  perpendicular ao plano 
       (equação 16 - Equação de Scherrer)[9]
      x


      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Fatores que afetam as intensidades de difração[editar | editar código-fonte]

      Os dados que geram os difratogramas são afetados não só por sobreposição dos planos de reflexão como também por efeitos físicos, instrumentais e por características de cada amostra[8]. Entre os fatores estão:
      • O fator de polarização;
      • Fatores de Lorentz e velocidade;
      • O fator temperatura;
      • O fator de dispersão atômica;
      • O fator de estrutura;
      • O fator de multiplicidade;
      • O fator de absorção;
      O fator de polarização é de natureza física, causado pela ausência de parelelismo entre o feixe incidente e os planos de reflexão. Esse fator provoca na onda difratada um decréscimo na intensidade em função do ângulo de incidência. Fatores relacionados à preparação das amostras são considerados as maiores fontes de erros para as três informações fundamentais de cada reflexão: posição angular, intensidade e perfil de pico. O deslocamento da amostra devido à fuga do ponto focal óptica do difratômetro pode ocorrer devido a dificuldade de prensagem do pó na altura dos suportes compatíveis com o arranjo geométrico do equipamento (geometria de bragg), provocando um deslocamento na posição dos picos e um alargamento assimétrico dos perfis. Tais fatores reforçam a importância da configuração do equipamento e de sua calibração, minimizando seu efeito nas intensidades de picos de difratograma[8].


      efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]
      Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum, mas descrito pela primeira vez por Albert Einstein, o efeito fotoelétrico explica como a luz de alta frequência libera elétrons de um material.[5]
      De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.
      Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[6][7][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.
      Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.
      Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.
      Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

        Equações[editar | editar código-fonte]

        Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
        Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
        Mais detalhes em: Energia do fóton
        Algebricamente:
        x


        FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

        Onde:
        • h é a constante de Planck,
        • f é a frequência do foton incidente,
        •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
        •  é a energia cinética máxima dos elétrons expelidos,
        • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
        • m é a massa de repouso do elétron expelido, e
        • vm é a velocidade dos elétrons expelidos.
        Notas:
        Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
        Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
        Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.





        Energia de Fermi é a energia do nível ocupado mais energético em um sistema quântico fermiônico à temperatura de zero absoluto. A definição estende-se também a sistemas acima do zero absoluto, caso em que a energia de fermi corresponde à energia obtida mediante uma média das energias dos níveis quânticos com probabilidade de ocupação - devido à agitação térmica - diferentes da unidade, cada qual ponderado pela respectiva probabilidade de ocupação. Associa-se via de regra à energia de fermi a notação EF, e a nomenclatura retrata nítida homenagem ao físico ítalo-americano Enrico Fermi.

          Introdução[editar | editar código-fonte]

          Contexto geral[editar | editar código-fonte]

          A energia de Fermi é importante na hora de entender o comportamento de partículas fermiônicas, como por exemplo os elétrons. Os férmions são partículas de spin semi-inteiro para as quais verifica-se a validade do princípio de exclusão de Pauli - que dita que dois férmions idênticos não podem ocupar simultaneamente o mesmo estado quântico. Desta maneira, quando um sistema possui vários elétrons, estes ocuparão níveis de energia maiores a medida que os níveis inferiores estejam preenchidos.
          A energia de Fermi é um conceito que tem muitas aplicações na teoria dos orbitais atômicos, no comportamento dos semicondutores e na física do estado sólido em geral.
          Em física do estado sólido a superficie de Fermi é a superficie no espaço de momentos na qual a energia de excitação total se iguala à energia de Fermi. Esta superfície pode ter uma topologia não trivial. Simplificadamente se pode dizer que a superfície de Fermi divide os estados electrônicos ocupados dos que permanecem livres.
          Enrico Fermi e Paul Dirac, derivaram as estatísticas de Fermi-Dirac. Estas estatísticas permitem predizer o comportamento de sistemas formados por um grande número de elétrons, especialmente em corpos sólidos.
          A energia de Fermi de um gás de Fermi (ou gás de elétrons livres) não relativista tridimensional se pode relacionar com o potencial químico através da equação:
          x


          FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


          TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

          x
           [EQUAÇÃO DE DIRAC].

           + FUNÇÃO TÉRMICA.

             +    FUNÇÃO DE RADIOATIVIDADE

            ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

            + ENTROPIA REVERSÍVEL 

          +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

           ENERGIA DE PLANCK

          X


          • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
            ΤDCG
            X
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli + 
            DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

          • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
            x
            sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
            x
          • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
          • X
          • T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
          onde εF é a energia de Fermi, k é a constante de Boltzmann e T é a temperatura. Portanto, o potencial químico é aproximadamente igual a a energia de Fermi à temperaturas muito inferiores a uma energia característica denominada Temperatura de Fermi, εF/k. Esta temperatura característica é da ordem de 105K para um metal a uma temperatura ambiente de (300 K), pelo que a energia de Fermi e o potencial químico são essencialmente equivalentes. Este é um detalhe significativo dado que o potencial químico, e não a energia de Fermi, é quem aparece nas estatísticas de Fermi-Dirac.

          Contexto avançado[editar | editar código-fonte]

          Principais energias em estrutura de bandas para sólidos cristalinos.
          Elétrons são férmions, ou seja, são partículas regidas pela estatística de Fermi. Nesta estatística, um dado estado quântico pode ser ocupado por no máximo um e não mais que um férmion, e portanto a máxima probabilidade de ocupação de um dado estado quântico é um. Os elétrons situados dentro da amostra estão confinados por um potencial atrativo exercido pelos íons positivos da rede. Conforme mostrado pela mecânica quântica, potenciais confinantes apresentam níveis de energias discretos. No caso dos átomos isto se reflete nos tão conhecidos níveis atômicos de energia e no caso dos sólidos cristalinos, a aproximação entre os átomos leva a um agrupamento dos estados em bandas de energia. Estas bandas são vistas nas relações de dispersão para os sólidos como sendo as regiões de energia permitidas para os elétrons, separadas umas das outras por janelas de energias proibidas (ou “gaps”).
          Rigorosamente falando,[1] a energia do nível de Fermi é definida em sistemas à temperatura de zero absoluto. Nesse caso, a energia do nível de Fermi é a energia do nível mais energético ocupado, visto que nessa temperatura todos os níveis com energia menor que a energia do nível de Fermi estariam ocupados (probabilidade igual a 1) e todos os níveis com energia acima, desocupados (probabilidade de ocupação nula). Para sistemas em temperaturas não nulas, não temos mais uma transição abrupta da probabilidade de ocupação, e sim uma probabilidade dada pela distribuição de Fermi-Dirac. Considera-se então como a energia do nível de Fermi a energia obtida pela média aritmética ponderada das energias de cada estado energético afetado pela excitação térmica (estados com probabilidades de ocupação diferentes de 1 ou 0) pesadas cada qual pela respectiva probabilidade de ocupação do estado associado. O denominador desta média será obviamente o número de estados envolvidos no processo. Repare que em acordo com a estatística de Fermi, dentre os referidos estados os menos energéticos têm probabilidade de ocupação maior do que aqueles mais energéticos. Para aproximação de elétrons livres a densidade de estados cresce com a raiz quadrada da energia, resultando em uma parábola no gráfico de energia x densidade de estados. Em semicondutores e isolantes esta dependência pode ser bem mais complicada.
          Outra definição equivalente implica dizer que a energia de Fermi corresponde ao potencial eletroquímico do sistema na temperatura de zero absoluto. Uma extensão a temperaturas maiores é evidente, e a energia de Fermi corresponde assim ao potencial eletroquímico do sistema na temperatura considerada. A energia de Fermi expressa, portanto, qual seria a variação da energia interna total do sólido, considerado sempre como sistema isolado e em equilíbrio termodinâmico, caso um elétron fosse dele removido. Sendo ENtotal a energia total do sistema no estado neutro, em seu equilíbrio termodinâmico, e EN-1total a energia total do sistema também em seu novo equilíbrio termodinâmico mas após a remoção do elétron, temos que:
          EF = ENtotal - EN-1total
          Nas definições acima, o nível de referência é o nível de menor energia disponível aos N elétrons, e a remoção de um elétron provoca, então, a redução da energia do sistema. Neste referencial a energia de Fermi é, portanto, positiva, bem como o potencial eletroquímico.
          Quando dois materiais diferentes são colocados em contato, a condição de equilíbrio termodinâmico exige que as suas energias de Fermi sejam iguais. Se as energias de Fermi fossem diferentes, a passagem de um elétron do sólido com maior energia de Fermi para o sólido com menor energia de Fermi resultaria em uma diminuição da energia total do sistema e o sistema composto não estaria, então, em sua configuração de equilíbrio, a de mínima energia, conforme exigido pelas leis da termodinâmica. Este fato dá origem a um fenômeno conhecido por diferença de potencial de contato que encontra diversas aplicações práticas, a saber na eletrônica de estado sólido (junção PN) e no uso do metal de sacrifício em navios.

          Ilustração do conceito para compartimento monodimensional quadrado[editar | editar código-fonte]

          A monodimensional compartimento quadrado infinito é um modelo para uma caixa mono dimensional. É um sitema modelo padrão em mecânica quântica para o qual a solução para uma partícula isolada é bem conhecido. Os níveis são marcados por um único número quântico n e as energias são dadas por
          .
          Suponha-se agora que em vez de uma partícula nesta caixa nós temos N partículas na caixa e que estas partículas são férmions com spin 1/2. Então somente duas partículas podem ter a mesma energia i.e. duas partículas podem ter a energia de , ou duas partículas podem ter energia  e assim por diante. A razão que duas partículas podem ter a mesma energia é que uma partícula de spin 1/2 pode ter um spin de 1/2 (spin "acima") ou um spin de -1/2 (spin "abaixo"), conduzindo a dois estadois para cada nível de energia. Quando nós olhamos na energia total deste sistema, a configuração para as quais a energia total é a menor (o estado fundamental), é a configuração onde todos os níveis de energia acima de n=N/2 estão ocupados e todos os níveis mais altos estão vazios. A energia de Fermi é consequentemente
          .